NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

hex slotted screw | slot parlor | western slots | casino sài gòn | mega vietlott | no download casino | 32red slots | pinball slot machine | lmss | casino lừa đảo bạn như thế nào | thử thách nghiệt ngã phần 2 tập 1 | casino phu quoc | winner casino erfahrungen | free slot games with bonus rounds | xstp thu7 | slotting machine mechanism | thư upu năm 2024 | thống kê loto miền bắc | tên kí tự game | fat rabbit slot | hot slots | casino đánh giá | gnome wood slot | link vào debet | du doan mb | black mummy slot | ku casino us | 200 welcome bonus slots | iwin casino | sơ đồ tư duy tây tiến | quay slot rong vang | ồ zê | antique slot machines for sale | tải ark | lich thi đấu v league 2024 | prowling panther slot free | casino bonus gratis senza deposito | kiểm soát điều kiện fo3 | mhw slot upgrade | spela slots online | ho chi minh casino | table mountain casino friant | 9club casino | big777 đẳng cấp game slots |