NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot technician | magic boxes slot | online slots for money | 3 x pci slots | giờ reset fo4 | 7 vien ngoc | spbo live score | slot drain | slot trực tuyến | out lock | thẻ cào miễn phí | nằm mơ thấy máu | dự đoán xsmb hom nay | bj39 | tao nick dot kich | najlepsie online casino | BWIN | doc truyen ngon tinh | slotted metal bar | quay thu mn gio hoang dao | 7m cn vn livescore | d365 | chém hoa quả | phan tích xsmb | mobilebongdaso | nằm mơ thấy rắn | doraemon tập dài | slot liên quân | thông kê loto | slots free spins no deposit | lucky247 casino | tham khao xs khanh hoa | 777bet casino | 888b today | trò chơi zombie | bảng đặc biệt 500 ngày | bingo live | dat cuoc | all british casino | casino png | sheik yer money slot | zing tv thái lan | ag sbobet | same day withdrawal online casinos | nằm mơ thấy nhiều cua đồng | nouveau riche slots | hellboy slots free | siêuno win | casino lily |