NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slotted nut socket | tên ký tự | bandar judi slot online | willy wonka slots | game bai doi thuong lang vui choi | doraemon tập dài mới nhất | game h5 la gì | thiếu niên ca hành thuyết minh | legend of cleopatra slot | xxnxx xom | football champions cup slot | chat se | casino 777 casino | warlords crystals of power slot | thùng đựng đồ đa năng gấp gọn | casino background | ph casino | xem truyen hinh vtv3 hd | 10bet online casino | 6 slots poe | lịch thi đấu futsal 2021 | babushkas slot | soi kèo đan mạch cộng hòa séc | juegos de casino online con dinero real | sbobet asian handicap | game lậu mobile việt hóa | 8 day casino | zodiac casino einloggen | 8868 | land slot | slots and games | soi cầu hcm chính xác | sakura thủ lĩnh thẻ bài phần 2 | ku casino apk | dự đoán xổ số quảng ngãi wap | golden palace casino | casino slot play | sc card slot dell | tinthethao24 7 | casino fre | game slot doi thuong uy tin | clip của diễn viên về nhà đi con |