NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online casino no deposit bonus codes | casino nagaworld | eimi fukada đến việt nam | i9bet81 | casino trump | casino bola | steam tower slot review | dafabet casino | forest slot | iwin888 | an1 | boku online casino | kết quả bóng đá nữ olympic tokyo | casino robbery | lo gan binh duong | 789 club casino | 777 com casino | nằm mơ thấy rắn đánh con gì | all slots canada | poker slots online | appointment slots | lo vip | canlı casino | indian casinos in california | soi keo barca | fun88 nhanh | borgata hotel and casino | scarlet pearl casino | bang xep hang itali | carte casino mastercard | omni slot | online slots pay by phone | video slot machines | lời thì thầm của những bóng ma | house of fun slots free coins | vo88 | casino cups | 999 slot apk | slot club 777 | tai app ku casino | 6696 | las vegas casino png | chuyển nhượng chelsea | unity slot machine tutorial | w88 casino malaysia | how to check number of ram slots in laptop |