NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

css slot machine animation | game doraemon | online casino no deposit bonus keep what you win | xsmn 28 02 24 | m88 sảnh casino | how to check number of ram slots in laptop | slots free spins | game slot mới nhất | grand lake casino | betwin | hai số cuối đặc biệt | da ga casino | bar 7 casino | wm casino | kí tự liên quân đẹp | 855crown casino | tructiepdaga | ice ice yeti slot | circus circus hotel casino reno nevada | đề hôm nay đánh con gì | nha cai casino | truyen ngon tinh hay | eye of horus slot game | quay hu slot | tai zalo ve dt | golden tiger casino review | cô vợ mẫu mực | pci x16 slot | fantasy fortune slot | huvang slot | stardust slot | bonanza slot big win | kí tự đặc biệt trong liên quân | seneca ny casino | slot id | 888b casino | coral slots | casino gold rush | avatar câu cá | airbag slot | rồng vàng slot | vau choi bai | bongda tv truc tiep | crown casino chrey thum |