NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ly cay bong mp3 | casino nap tien bang the cao | Hội Viên M8win | viec lam o casino campuchia | tan xuat lo to | casino hoiana | casino utan registrering | tai zalo ve dien thoai | mơ ăn thịt chó đánh con gì | xo so mien bac 8888 | mannhantv | công trình casino nam hội an | nuoi lo khung net | soi cầu 888 2nháy miễn phí | 888 casino login | casino io | happy pig slots | ladbrokes casino no deposit | maplestory v matrix slot enhancement | clip 8 phút vtv | gio reset fo4 | online casino real money | mơ người chết sống lại | high 5 casino slots on facebook | đánh bài trực tuyến casino | thống kê giải đặc biệt tuần tháng năm | chơi casino | crown bavet casino hotel | slots free spins | slot crazy | casino hợp pháp ở việt nam | slots real money | bet789 vin | betvictor live casino | myb casino no deposit bonus | casino philippines | corona casino phú quốc | bongdainfo | dragon casino game | lucky slots | con gà số mấy | online slots tips | game8jp | planet 7 casino review 2019 | nằm mơ thấy dây chuyền vàng đánh đề con gì |