NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino raiders 2 | quay hũ slot uw88 | tsogo sun casinos | xóa trang trắng word | hồ tràm casino | slot mobil | payment gateway for online casino | game one piece 2 | slotted hole | livescore kqbd | fan tan casino | fifa mobile nexon nhật bản | tại bắn cá tài lộc | tải ku casino | vicky ventura slot | can you cash in casino chips anywhere | đăng ký làm đại lý ku casino | tin chuyen nhuong chelsea | situs slot | how many slots for asia in world cup | kynu hentai | dự đoán bạc liêu | vikings go to hell slot | free welcome bonus no deposit required casino uk | giang hồ phố hoa phần 2 | code king piece 2021 | khởi nghĩa hương khê | slot die head | casino buffet prices | đề về 24 | slot spiele | live casino casimba | download king tips | casino thomo | how many ram slots in my laptop | cesar casino | tan suất loto | link sopcast bong da hôm nay | judi slot pragmatic | thẻ cào miễn phí | slotted disc | dao vang doi |