NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

the nugget casino | soi cau vip xsmb | dự đoán xsmb hom nay | cuclacnet | poe map device 5 slots | xổ số đồng nai ngày 2 tháng 8 | casino poker table | free slots | truyện tranh sex có màu | best jili slot game | sheik yer money slot | conan tập mới nhất | xnxx 16th | cryptocurrency casino | co giao thao | clip 8 phút vtv | casino trực tuyến uy tín | dien dan an choi mien nam | viva bong88 | online casino blog | rampart casino vegas | online slot games singapore | fruit farm slot | keonhacai net1 | casino restaurant | spbo | banthang vip | 1 hiệp bóng chuyền bao nhiều phút | 7 viên ngọc rồng mới nhất | betwin | wwin | thư viện phật giáo | casino chips | bet888 slot | slot 9999 | live casino | what is dedicated slot | legends casino | tisotructuyen | dealer casino | xổ số | tv hay org hoat hinh | timber la gì | how to play penny slots | vao ibet weebly |