NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino affiliate | netent slot | xổ số trà vinh ngày 29 tháng 04 | starlight longan | halloween fortune slot | moba là gì | new york new york hotel & casino | yêu nhầm chị dâu tập 29 | cashanova slot | biggest casino bonus | taitrochoimienphi | poker star casino online | nz paysafe casino | shadow fight mod | casino 1995 trailer | hells grannies slot | wishmaker casino | crowne international casino danang | giờ vàng chốt số miền bắc miễn phí | angel of the winds casino | đá gà casino trực tiếp ngày hôm nay | sòng casino | mơ thấy tiền đánh con gì | magyar online casino | fun 8802 | casino hồng vận | download zalo | aco slot drain dwg | sell slot machine | clip 8 phút vtv về nhà đi con | slot game online for mobile malaysia | dong phym | jackpotcity com casino en ligne | slot god of wealth | vg 88 casino | vn88 casino | game đá bóng world cup 2020 | spintastic casino | lịch thi đấu vl 2021 | world trigger | thẻ vàng tv | vô tình nhặt được tổng tài tap 13 | tiếng anh giao tiếp trong casino | xổ số cần thơ ngày 19 tháng 1 | giải đặc biệt theo năm | halloween fortune slot | slotted strut | casino clipart |