NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chuyển nhượng chelsea | y8 2 | jackpot giant slot | thống kê lô | maplestory pocket slot | casino đồ sơn | dự đoán xổ số miền bắc ngày mai | dagathomo | top credit card casinos | casino belge | slot machine rtp | winning room casino review | las vegas casino bankruptcies | phu quoc casino hotel | how do slot tournaments work | fan8 vin | pragmatic play slots rtp | phủ nano kính | p3 casino online | single bet | online casino slots australia | baocaonoibo | casino hồ tràm grand | việt nam 7m cn | jeetwin casino review | kqbd7m | regular slotted container box | casino mit sepa lastschrift | sam loc bigkool | xổ số cà mau ngày 20 tháng 6 | vinoasis casino | regular slotted container box | gtx 1060 pci slot | cách xóa trang | game slot online | west casino | vinagames | jackpot slots games | raging rhino casino | ddr2 dimm slots | slots animal | venus casino | rocky gap casino | casino geant | thống kê giải đặc biệt theo năm | best online crypto casino | free slot machines with bonus | legend of cleopatra slot | n3ds sd card slot | visa electron casino |