NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

xin một slot | free cash no deposit casino | bang dac biet nam | tan so loto | ai my nhan zingplay | 2so cuối giải đặc biệt | chốt lô | tạo dàn đề 3d | xstp thu 7 | novomatic slots online | game 777 slot club | how many caesars casinos are there | du doan lodephomnay | kinh doanh casino tại việt nam | kq bd 24 | biggest casino bonus | xsmy | con slot | code king piece 2021 | online casino slots australia | slot games | msi gl62m 7rdx ssd slot | gold club slot machines | vegas casino resort | casino saigon | dagathomo | slots that pay cash | id slot punch | doraemon tập dài mới nhất | casino action | hình ảnh casino campuchia | chạm tay vào nỗi nhớ tập 17 | real cash online casino | new free slots | mơ thấy cứt | nhà cái thưởng thành viên mới | app casino | eye of horus online slot | thử thách nghiệt ngã phần 2 tập 1 | sở kiều truyện zing tv | thống ke loto | quatro casino mobile | zone casino msn | cách chơi casino luôn thắng |