NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bigvip slot | kí tự liên quân đẹp | snow slot | yukon gold casino | casino bắc ninh | james bond casino | slots that pay real money | william hill casino club mobile | casino fun online | poisoned apple slot | 10bet online casino | casino poker table | i9bet81 | thần tai mn | thống kê xổ số gia lai | best slots at golden nugget biloxi | nhiệt huyết thần tượng phần 3 | tansuat loto | slot car accessories | slot nghĩa là gì | fifa mobile hàn quốc mới nhất | playamo casino | sunpazuru | betvictor live casino | zalo download | slots lv sign up bonus | vuejs slot class | mega moolah slot | du doan lodephomnay | no download casino | jogos de slots online | postgres replication slots | casino nap tien bang the cao | new pay by mobile casino | hương vị tình thân tập 34 full | kickapoo lucky eagle casino events | thống kê giải đặc biệt theo tháng năm | xsmn 21 11 2022 | giauto86 club | agen judi live casino | game slot doi thuong uy tin | casino roleta | thiendiahoi | sex tre em my |