NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online casino singapore | big777 slot | casino online vina | scandibet casino | audi q8 giá lăn bánh | w88 vin shop | happyluke casino | Hội Viên M8win | review casino phú quốc | vua hai tac zing | sòng bài casino campuchia | tiếng anh giao tiếp trong casino | bet888 slot | mobile casino echtgeld | bảng đặc biệt năm 2002 | pharmacie casino montpellier | nextgen free slots | 777 casino roulette | ruby slots sign up | slots guide | kèo thơm hôm nay | green yellow casino | minecraft 1 18 | van quang log qua doi | jungle jackpots slot | casino theme party supplies | bongdanet vn ty le | bảng phong thần 2006 | wap soicauxoso | moba là gì | xsmn binh luan | đề về 59 hôm sau đánh con gì | casino ở sài gòn | hotline slot | 2 số cuối giải đặc biệt miền bắc | mobile slots pay by phone bill | netbet casino live | game joker slot | circus circus hotel casino reno nevada | tân suất loto | reset fo4 |