NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

kq futsal world cup 2021 | soi cau vietlott | doraemon nobita và cuộc chiến vũ trụ | gunny viet | casino online italia | slot antenna | shadow fight mod | excalibur hotel & casino | tai ku casino | 200 deposit bonus slots | vệ sinh buồng đốt xe máy | doraemon nobita và vương quốc robot | hai số cuối giải đặc biệt | gói cước wifi viettel | tai game danh bai beme 2015 | it casino | bandar judi slot online | turnkey online casino business | viết thư upu năm 2024 | soi cau 666 mien phi | cách chơi bài casino | william casino club | rio all suite hotel & casino | online casino games for money | mhw slot upgrade | casino 1995 | intertops casino | soicau3cang | mega casino login | novomatic slots online | european slot sites | genting casino liverpool | bigkool phiên bản cũ | cửa hàng royal casino | trò chơi zombie | social casino games market size | antique slot machines for sale | xem bói bài tây | việt nam vs croatia | mad slots | cascading reels slots | mi 8 lite sim slot | gw2 enrichment slot | 32red slots | american casino city |