NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

me zalo chat | lotsa slots free vegas casino slot machines | bj39 | Hội Viên M8win | down zalo | y8 1 nguoi com | dien dan fifa online 3 thao luan chung | xem k pc | lịch thi đấu v lich 2024 | gunny hoc sinh | vn vs jor | best online casinos in ireland | casinos in henderson nv | grand victoria casino elgin il | casino jobs london | sleutel kwijt deur op slot | 2 số cuối giải đặc biệt miền bắc | online casino mexico | mơ thấy ma đánh con gì | n3ds sd card slot | eurogrand casino free spins | slot machine games | american casino city | thai casino online | slot pattern | nhà trẻ online | nằm mơ thấy rắn to | tivoli casino | taxi 7 chỗ | sx minhngoc net | soi cầu 247 me miễn phí | vệ sinh buồng đốt xe máy | nightrush casino online | aco stainless steel slot drain | tải saoclub | water dragons slot | hells grannies slot | live casino solutions | pink casino no deposit | game bài catte online | bet789 vin | soi kèo 7m | baocaonoibo | seo for casino | vietnam casino | kiểm soát điều kiện fo3 | spokane casino |