NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

jackpot giant slot | casino in victoria canada | emperor of the sea slot | online slots welcome bonus | choi game roblox mien phi | casino nam hội an tuyển dụng | roma đấu với feyenoord | xoilac tv 90phut | xoilac 90phut | casino plus | soi cau hcm | golden mane slot | thời tiết phú quốc 10 ngày tới | devils number slot | xo so truc tiep 3 mien minh ngoc | slot machine | mơ thấy người chết sống lại | 007 casino royale | casino table price | twin là gì | ban yourself from casino | surface pro 4 sd card slot | online casino free sign up bonus | casino hl | corona casino phu quoc | xem đá gà trực tiếp casino | lucky casino | quad cities casinos | xskt3mien | slot 999 online | online casino providers | monte carlo casino monaco | lich futsal world cup 2021 | casinos in birmingham alabama | mơ rắn | cakhia z1 link | moby dick slot | casino games | accommodation christchurch casino | 7 spins casino review | big time gaming slots | hay ho net | tạo tên liên quân đẹp | abc88 slot | fairy tail phần 3 | how to go to the casino | game bài slot đổi thưởng |