NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

gold party casino free slots | game bài slot đổi thưởng | lô đề online | w88 w88vn com | free slots machines with bonus feature | yêu nhầm chị dâu tập 29 | k8 casino review | chăm sóc xe hơi | slot boot | canlı casino oyna | tải minecraft 1 18 5 miễn phí | casino based on | w88 casino | casino cups | 8 slot toaster | bắn cá tiền vàng | soi kèo barca | xổ số cần thơ ngày 19 tháng 1 | sweet alchemy slot | tải teaching feeling | evowars io game y8 | top rbk xsmb | free slot games | john wick 1 | slot game slotgame.ai | tại game trí tuệ siêu phàm cho ios | tải ku casino | download king tips | mơ thấy chó đánh con gì | cách xóa trang trống trong word | best casino for slots in vegas | ica phien ban moi nhat | mơ thấy chó đánh con gì | coral casino review | game bài slot đổi thưởng | cambodia casino | pci card in pci express slot | wolf rising slot | titanbet casino | lời thì thầm của những bóng ma | night rush casino online | casino cups | wild orient slot | spokane casino | me zalo chat | fan tan casino | nhà cái slot | keonhacai net1 | tai zing speed |