NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

10 no deposit slots | lich thi dau msi 2023 | soi kèo đan mạch cộng hòa séc | câu hỏi rung chuông vàng | slot terbesar | video casino games slot machines | trực tiếp copa america 2021 | slot no hu | sẽ gầy | slot club 777 | g casino online | casino near me with slots | slot machine taxes | id slot punch | casino winner kroon | thống kê giải đặc biệt theo tháng năm | vpay88 club | casino gold rush | carousel casino | casinos gratuitos | bongda88 | casino hotel | play 88 fortunes slot | f88 la gì | u23 việt nam vs u23 croatia | tai game naruto đại chiến | chinese casino game | đăng ký 3g | rượu sim | sieu nhan cuong phong tap 49 | link sopcast bong da hom nay | lucky casino free spins | soi cầu 666 miền bắc | tai sun casino | casino night outfit | fun casino fun | bóng đá 8899 | xosothantai | casino vũng tàu | casino vân đồn | secret of the stones slot game | winner casino erfahrungen |