NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

pragmatic play slots rtp | sands casino | vegas slot wins | captain jack casino mobile | xnxx 16th | siêu bắn cá hũ vàng tài lộc | casino potsdamer platz | casino montecarlo | khu rừng nhỏ của hai người tập 11 | live casino online canada | 9club casino | casino sex | empire game | sd slot | twin casino login | giá xe lead 2021 | best online casino slots | maplestory v matrix slot enhancement | fallout new vegas casinos | soi cau mn hôm nay | game khu rung bi an | cửa gió slot | hack casino | nhạc đám cưới tiếng anh | lịch chung kết world cup | lịch thi đấu v league 2024 | trusted casino | cách chơi casino | slot machine template free | jackpot party casino | the royal casino | spin palace casino real money | v9vet | live house casino | canberra casino hotel | casino forum | link sopcast bong da hôm nay | does my laptop have pcie slot | hotels near parx casino bensalem | house of fun slots free coins | epic casino | trang web casino uy tín | cac trang gai goi uy tin | super 7 casino | tải minecraft 1 18 |