NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

bitly tiengruoi | gala casino 10 pound free | quay thử phú yên | ketqua nét | ti so 7 m | xsmn binh luan | magic portals slot | 368 bet | link vào debet | elara hotel casino | paypal slots | choi roblox | thống kê lô | casino hu | 3cang | thống kê giải đặc biệt hai số cuối | tải 888 casino | nấu xôi đậu phộng | ca si giau mat chung ket | babushkas slot | genting casino in london | 888 slot | casino quotes | double bubble slot | gio reset fo4 | monte carlo casino | titanic slot machine | 888 bet casino | 200 slots bonus | rượu sim | miami casino hotel | casino online italia | vô tình nhặt được tổng tài tap 13 | macao du doan | fabet live | my play tren zing me | potawatomi bingo casino | đầu số 0127 đổi thành gì | 20p slot | dự đoán xsmb xs me | casino boni deutschland | slot slot | gunny mobi online | lịch thi đấu lck mùa xuân 2024 | thuyết minh về một danh lam thắng cảnh |