NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lịch đá bóng aff cup 2021 | xapk là gì | thống kê lô xsmb | live casino house | casino trực tuyến khuyến mãi | miếng dán khe cửa đa năng sealboy slot | water dragons slot | hoiana casino | giải vô địch brazil | country club casino | giải đặc biệt theo năm | wap soicauxoso doan | super casino slots | bets com casino | 5 reel slots online | mạt sắt là gì | slotted angle furniture | tần suất | beste casino app | insufficient attunement slots dark souls 3 | đăng ký 1 slot | ẻt | hà lan senegal | top 10 online casino | live casino online canada | 4399 nau an | chibeasties 2 slot | genting casino | dafu casino hack | game offline hay cho laptop win 8 | đánh cắp giấc mơ | casino locator map | 7 feathers casino and resort | kết quả xsmb 100 ngày | vwin com | poisoned apple slot | soi kèo anh vs ch séc | xóa trang trong word | 0169 đổi thành số mấy | mod skin liên quân | bitly tiengruoi | game lậu mobile việt hóa | sodo casino earthgang | slot games | 200 welcome bonus slots |