NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

electronic slot machines for sale | montecarlo casino | casino parents guide | white wing manteau slot | casino trực tuyến uy tín nhất | vua hai tac zing | tvt gamer | slots heaven review | maplestory pocket slot | pots of gold casino | đá gà trực tiếp casino 67 | lỗi load a4 paper in manual feed slot | zalo download | ariana slot machine | royal casino restaurant | vue slot event | cool play casino | cherry jackpot casino reviews | casino locator map | casino theme party | mơ rắn | casino trực tuyến w88 | chotloto | slot belvedere | ipad sim card slot | 360game | trực tiếp đá gà casino 67 | casino thomo | slot machine occasion | mô tưa bơm nước | code free fire 2021 | bigwin99 slot | casino realistic games | 88 slot | luckland casino review | vulkan casino | bigkool online | ho chunk casino dells | chat zalo | book of ra deluxe slot | casino vung tau | bitly tiengruoi | one piece zing me | slot meaning | windguru phan rang | xsmb hôm nay đánh con gì bà con ơi |