NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mi 8 lite sim slot | casino online vina | u turn slot | single bet | best online live roulette casino | soi cầu xsmt win2888 asia | xổ số bạc liêu ngày 6 tháng 9 | top 10 best online casinos | casino trực tuyến tặng tiền | dự đoán bạc liêu | table mountain casino friant | pink elephant slot | casino winner | soi cầu mn | vpay88club | tỷ lệ kèo malaysia mới nhất | airbag slot | betphoenix casino | co up sanh rong | top slots | crown bavet casino hotel | fifa mobile hàn quốc | lich futsal world cup 2021 | doraemon nobita và vương quốc robot | fika casino | ibongda pro | reel gems slot | moc bai casino | tạo tên liên quân đẹp | hd slot machine | dell inspiron 3542 ram slots | mobile slots pay by phone bill | tải md5 | mơ người chết sống lại | kí tự đặc biệt trong liên quân | slotted or unslotted waste | nằm mơ thấy rắn đánh con gì | truyện ngôn tình việt nam | nohu3 | free slots | casino quotes | dead target | casino png | slot king club | free deposit slots | dự đoán xổ số kiên giang |