NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

permainan slot online | du doan xsmn dai phat | bonus bear slot | ket qua bong da vong loai world cup 2018 | matrix 8 casino | onebox63 | xổ số đà lạt ngày 29 tháng 5 | code football master 2 vn mới nhất | flash slot | tải game đua xe | lịch thi đấu futsal 2021 | casino corona | casino su | yêu nhầm chị dâu tập 17 | tiem vang kim hung quan 5 | boom casino | lo gan py | online slots for money | minecraft 1 18 0 apk | nagaworld casino | giaitriluke | casino malaysia | best online crypto casino | lịch thi đấu playoff lck | lộ trình xe buýt số 10 | slots nghĩa là gì | gold eagle casino | con bướm số mấy | việc làm 123 | slot minecraft | isa slot motherboard | wishmaker casino | darwin casino restaurants | casino royale online gambling | your name zing tv | y8 1 nguoi com | pci express 3.0 x4 slot | stash of the titans slot | halloween fortune slot | retro reels slot | baocaonoibo | miami casino hotel | sunwin casino | kubet casino | roulette casino | best casino slot websites | lich aff 2023 | circus circus hotel casino reno nevada | netent online casinos |