NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

smb to pci e slots | dự đoán bạc liêu | ca si giau mat mua 2 ban ket 3 | xem truyen hinh vtv3 hd | w88 w88vn com | đăng ký jun88 jun88.casino | online slot games singapore | scarlet pearl casino | golden tripod casino | thông kê 2 số cuối giải đặc biệt xsmb | kết quả loto | fruits n royals slot | thư viện phật giáo | chumba casino app | thẻ vàng tv | seo for casino | list nhạc karaoke | cô vợ mẫu mực tập 1 | free slots with bonus | coral slots | đăng nhập tỷ phú 88 | hoiana casino | giá xe lead 2021 | casinos online autorizados em portugal | kí tự liên quân | qq288 slot | seneca niagara casino and hotel | ssd wifi slot | birds on a wire slot | deur op slot sleutel kwijt | casino moc bai | mystic lake casino map | chơi casino trực tuyến chỉ có thua | baocaonoibo | adsbygoogle push error no slot size for availablewidth 0 | tải bắn cá hoàng kim apk | xóa trang trong word | ongame 222 | sweet alchemy slot game | doctor love on vacation slot |