NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot machine occasion | moby dick slot | trực tiếp bóng nữ | tim lai yeu thuong | judi slot terpercaya | chống chuột cho xe ô tô | casino bank | huong duong nguoc nang tap 40 | cap slot | 10 no deposit slots | joker123 slot | casino x отзывы | tylenhacai | fang69 tren may tinh | vo lam 777 slot | no deposit bonus casino australia | jeetwin casino | online casino paysafecard | grand lake casino | boc fan | coi bói tình yêu | foxwoods casino to mohegan sun | game dá bóng y8 | soi keo ngay mai | casinos in birmingham alabama | m88 m88zalo | free casino slots with bonus | am muu va tinh yeu tap 731 | zalo zalo | casino corona phú quốc | casino moc bai | starlight kiss slot | mu alpha test | bang dac biet nam 2021 | 188bet casino | mu alpha test hôm nay | used slot machines for sale | how to get attunement slots dark souls 3 | rocket fellas inc slot | gala casino 10 pound free | loto678 com | sdt gai goi zalo | xem k pc |