NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

oklahoma casino resorts | khởi nghĩa hương khê | đăng nhập tỷ phú 88 | xstv hang tuan | đá gà cựa sắt casino | neue online casinos 2020 | wink slots promotion code | hotel and casino | nằm mơ thấy rắn to | extra wild slot | sakura thủ lĩnh thẻ bài phần 2 | lucky247 casino | win8 club | casino night | snake eyes casino | 5 homestay vũng tàu | soi kèo đan mạch cộng hòa séc | migliori casino online italiani | canlı casino | dd xstn | night rush online casino | thơ về ông nội đã mất | free fruit slots | xổ số vũng tàu ngày 11 tháng 1 | xs mỹ hạnh | casino del bel respiro | retro reels slot | irish luck casino no deposit bonus | charlie m casino | vinagames | slot machine bonus | rocky mountain slots | royal casino | casino trực tuyến uy tín cvproducts | xóa trang trắng word | game slot online | 6 slots poe | những bài hát karaoke | 52choigame | bally slot machines | chốt lô | casinos in birmingham alabama | casino bonus calendar | palace slots casino | magyar online casino |