NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cá cược xosobet | hialeah casino | bingo and slots uk | myb casino no deposit bonus | giải đặc biệt trong tuần | aspers casino logo | grand sierra resort and casino reno nv | s689 casino | tipico casino | bitcoin casino club | baocaonoibo | map sỏi | casino fundraiser ideas | casino game icon | 78win01 com | cubet | 512 casino | 2xsport | đá gà casino trực tiếp hôm nay | holy moly casino slot | deutsche casinos mit bonus ohne einzahlung | carnival queen slot | online casino guide | oude slot heemstede | khách sạn phú an | tạo tên pubg đẹp | ww88 casino | golden hoyeah slots hack | naga casino | new online slots | vue component slot | gren | online casino mexico | judi casino online | elara hotel casino | casino sign up | mesin slot | casino jobs london | tai app ku casino | refurbished slot machines | real slots australia | truc tiep bong da tv | dự đoán xsmb xs me | 2vn | vinoasis casino | cho em 1 slot | bilutv net | online casino boss | gaigoi nha trang | online casino bonus free spins |