NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tải bắn cá h5 | houseofjack com casino | cởi áo | 32red slots | slot mobile phones | mobile zodiac casino | doc truyen ngon tinh | m99 online casino | kết quả xổ số miền bắc ngày 25 tháng 7 | kí sự thiếu niên | live casino malaysia | hp 88 ink | thơ về ông nội đã mất | game slot moi | matrix 8 casino | sun pazuru tài xỉu ios | casino trực tuyến m88 | kết quả xổ số miền bắc ngày 25 tháng 7 | game slot online | online casino slots real money | cầm xe không chính chủ | doc bao24h hom nay | hotline slot game | tạo dàn đề 2d | phay buc ket ban | casino background | burning desire slot review | bournemouth đấu với chelsea | casino | code free fire 2021 | golden fish tank slot | caribic casino | genting casino liverpool | gunny viet | australian mobile casino no deposit bonus | 1 hiệp bóng chuyền bao nhiều phút | react casino | irish slots online | sbobet com | video slot games online | casino jar | sheraton saigon casino | tân suất loto | iosgods | mu alpha test | new casino not on gamstop | lô gan bình dương | thẻ vàng tv | signal slot c++ |