NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mystic lake casino map | betphoenix casino | golden grimoire slot | hells grannies slot | most secure online casino | code sieu anh hung hai duong pro | casino royale 2006 | fruit spin slot | mobilebongdaso | an1 | how many ram slots do i have | sudoku mức độ khó | quay thử xổ số đà nẵng giờ hoàng đạo | karaoke hay | casino renovations | casino lucky | cuclacnet | vwin com | cherry slots casino | real slot machines online | xoilac365 | valley view casino | tải zalo về điện thoại | flamingo las vegas hotel & casino | stainless steel slotted turner | gold club slot machines | những bài hát karaoke | mad slots | đầu số 0127 đổi thành gì | choi game roblox mien phi | lmss | soi cầu hcm chính xác | aristocrat slots | gold dragon slots | joker millions slot | pci x16 slot | canberra casino hotel | lucky time slots | ignition casino promo codes | netent online casinos | doraemon tập | vegas slots real money | tải md5 | truyện tranh sex có màu | casino trực tuyến uy tín cvproducts | casino hotel | free online video poker slots | casino bắc ninh | sunquest slot |