NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mi 8 lite sim slot | world trigger | casino da nang | tiengruoi gapo | Chơi game bài Tiến lên miền Nam miễn phí | kqxsmb p1 | ẽxciter 135 | venus casino cambodia | chibeasties 2 slot | web slot | game slot vtc | game choc pha mi nhan | các loại bài trong casino | tần số loto | live casino | spin casino live chat | monte carlo casino online | reel gems slot | most secure online casino | doraemon tập mới nhất | evolution gaming slots | slots free spins | b88 ag com | golden tripod casino | sòng bạc casino ở hà nội | casino potsdamer platz | pullman reef hotel casino cairns | 7 feathers casino and resort | truck simulator vietnam modpure | slotted nut socket | xsmb 2 số cuối giải đặc biệt | neue online casinos | mơ thấy đưa tiền cho người khác | phẩu thuật thẩm mỹ webtretho | 7 spins casino review | yeu apk | sieu ca h5 | blazing star slot | casino jobs london | types of casino games | aco stainless steel slot drain | link sopcast bong da hom nay | casino queen | tần số loto | slot bahis siteleri | kí tự liên quân | địa chỉ dự an casino nam hội an | 8 day casino |