NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot | slots club casino | game slot đổi tiền mặt | stardust slot | migliori siti slot online | hợp pháp hóa casino trực tuyến ở việt nam | thiendiahoi | tro choi babybus | code free fire ko giới hạn 2021 | casino uy tín | great blue free slot game | best casino slot websites | tải bắn cá hoàng kim apk | vnrom | hai số cuối của giải đặc biệt | live casino house | slot machine gallina | soi cầu 247 me miễn phí | casino game icon | free welcome bonus no deposit required casino uk | judi casino slot | khu cau keo net | freebet slot online | dự đoán ma cao | mơ người chết sống lại | đội hình real madrid | truyện ngôn tinh | do son casino | game casino danh bai doi thuong | pragmatic play slot | casino games echtgeld | mobileblog | ti so 7 m | pci express 3.0 x4 slot | tim ban tren zing me | xổ số bạc liêu ngày 6 tháng 9 | magic boxes slot | trực tiếp đá gà casino | bong889 | golden hoyeah slots hack | best online live roulette casino |