NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lost life | soi cầu mn | truyện ngon tinh | vận mệnh kỳ diệu tập 9 | nhận quà free fire miễn phí 2021 | ipad 6th generation sim card slot | yêu nhầm chị dâu tập 17 | những bài hát karaoke hay nhất | uk casino | ok online casino | hai số cuối giải đặc biệt | mobile online casino south africa | triển mưa hay chuyển mưa | casino baden restaurant | quay thử phú yên | casino realistic games | william hill casino club mobile | casino holiday packages | malina casino bonus | slots that pay real money | all british casino | xổ số may mắn | winbet casino az | xoilac 90phut | các bài hát karaoke | mobil casino oyunları | game of thrones slot machine | 888 casino login | dead or alive slot | 21d | v3 run | nvme vs m2 slot | ibongda tv trực tiếp | jackpot strike casino | microgaming live casino | casino online italia | logan mienbac | 888 casino gratis spins | 666 casino | 888 ladies slots | bongda tv truc tiep | excalibur hotel & casino | mayfair casino london | juegos de casino online con dinero real | kqbd7m |