NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

tân suat loto | tiffany mills slots | y8 2 người | chrome casino | vua hu | soi cau mn | hoi an casino | tylenhacai | đầu số 0127 đổi thành gì | cho em 1 slot | xổ số cà mau ngày 20 tháng 6 | msi gl62m 7rdx ssd slot | let it ride casino game | casino pour le fun | giochi gratis slot | chat se | free welcome bonus no deposit required casino uk | tao dan 3d | pt slot | casino meaning | minecraft 1 18 tiếng việt | doc bao24h hom nay | rolling hills casino phone number | bảng đặc biệt 500 ngày | agree gì | bảng đặc biệt năm 2002 | how to win on penny slots | medusa casino | santastic slots | vo tinh nhac duoc tong tai tap 18 | ku vip slot | tải saoclub | xổ số đà lạt 17 tháng 04 | ruleta de casino como se juega | trực tiếp bóng đá 91 | ku casino official |