NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

pháp vs kazakhstan | baocaonoibo | code siêu cấp gunny mobi | ongame 222 | tải app vietlott sms | https manvip club | slot slot | win 777 slot | dien dan ngoc rong | immortal guild slot | dd xstn | slot machine occasion | irish luck casino no deposit bonus | tasmania casino | robin slot | fishing casino | slot machine card | party slots | 777 lucky slots | nieuwe casino online | uk casino | cambodia casino | chuyen nhuong bong da anh | game slot tặng code | xổ số đà lạt ngày 9 tháng 04 | nettruyen theo dõi | dell vostro 3578 m2 slot | dead target | dead target | agen slot online terpercaya | slot antenna | co giao thao | kings romans casino | video slot bonus | casino parents guide | casino việt nam | casino hải phòng | evowars io | netent online casinos | JDB666 com | casino renovations | net truyen full | ku casino official | slots that pay cash | bongda88 com | what is dedicated slot |