NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

trusted casino online canada | online casino tips | sổ mơ lô đề dân gian | 2xsport | fortune bay casino minnesota | huvang slot | vpay88 club trực tuyễn | thống kê giải đặc biệt theo tháng năm | ok online casino | mơ thấy rắn to | xoso66 | slot club 777 | bonus member baru slot | tải ku casino | dự đoán xổ số quảng ngãi thần tài | casino tarjoukset | mod skin liên quân | carnival queen slot | tần xuất hay tần suất | link vào 1xbet | cô dâu gán nợ tập 1 | venetian rose slot | vitamin 3b có tác dụng gì | makro | nuoi lo khung 247 | thông kê tần suất loto | tropicana casino online review | tan xuat lo to | online casino free sign up bonus | casino royal mandelieu | giá xe lead 2021 | mơ người chết sống lại | w540 ram slots | kí tự liên quân đẹp | lời thì thầm của những bóng ma | yeu apk | react casino | the westin las vegas hotel casino & spa | lớp học đề cao thực lực manga | nhà trẻ online | wild vegas casino review | bắn cá tiền vàng | link slot online | giant panda slot | casino nap tien bang the cao | shopee app |