NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

minecraft 1 18 0 | white knight slot | checker bắc ninh | josé dinis aveiro | casino lua ban nhu the nao | hanoi casino | vwin com | rượu sim | montezuma slot | người mẹ tồi của tôi tập 11 | elvis the king slot | casino phượng hoàng bắc ninh | laptop security lock slot | matrix 8 casino | xóa trang trống trong word | casino hạ long | cổng game slot | lucky8 casino | xsmn 18 4 2023 | k8 casino review | casino jefe erfahrungen | white rabbit slot free play | bet247 casino | tải roblox miễn phí | xs100 ngày | country club casino | casino hồ tràm tuyển dụng | Hội Viên M8win | mơ thấy người chết đánh con gì | ongame 222 | b68ng com | spintastic casino bonus | 888 casino no deposit bonus | cassava slot sites | vpay88 club trực tuyễn | candy jackpot slot machine | new free slots | win win casino | lịch thi đấu world cup 2024 | vvn88 | slotomania slot | vietlott 22 2 22 | canon 2900 driver 32 bit |