NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

spider slot | đá gà trực tiếp casino 67 | xsmn 28 02 24 | dự đoán xsmb hom nay | pci card in pci express slot | đê chèm | john wick 1 | tai sun casino | caribic casino | pay88 club | iosgods | karaoke vol | tansuat loto | nettruyen theo dõi | casino online uy tín | thống kê xsmb năm 2020 | scandibet casino | vô địch thổ nhĩ kỳ | slot machine gallina | thông kê loto | fbu edu vn đăng nhập | jeju united | background casino | thống kê lô | kunet | casino web | ẻt | bitsat slot | gnome wood slot | 888 ladies slots | win 777 casino | lịch thi đấu v lich 2024 | 888 casino gratis spins | accommodation christchurch casino | game casino uy tín | fifa mobile quốc tế apk | những bài hát karaoke sôi nổi | casino action | augsburg đấu với dortmund | palace slots casino | isle of capri casino | star casino sydney | toolgame | soi cau tg | online casinos that accept neosurf | xvedeo | casino royal | free fruit slots |