NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

best online casino in new zealand | online casinos in ontario | thông kê giải đặc biệt theo tháng | warehouse slotting | nằm mơ thấy vàng | sg online casino | mobile casino no deposit bonus no deposit | caravelle hotel casino | crown casino melbourne | vô địch brazil | thống kê giải đặc biệt cả năm | casino ho tram | free slots that pay real money | 101tv bóng đá | big time gaming slots | source code casino | wild scarabs slot | maria casino bonus | mega casino | vn vs jor | giải đặc biệt trong tuần | all slots canada | free slot machine play | white wing manteau slot | kqsxmb100ngay | 12bet slot | thống kê hai số cuối | lucky koi slot | new slot sites no deposit | tần suất loto | free slots | con slot | casino 2go | hatano yui | lô khung 247 | vinagames | druid spell slots | kieu nu viet net | casino trực tuyến ac | sidewinder slot | yêu bắn cá | vdqg argentina | naruto truyen ky | slotted hex nut | thong ke tan suat loto |