NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

zone casino msn | 1x slot casino | sweet alchemy slot game | casino near me | am muu va tinh yeu tap 731 | s689 casino | phan tích xsmb | game of thrones slot machine | online slots tips | xổ số ngày 25 tháng 04 | đại chiến kame | đặt cược trái tim | soi kèo barca | voucher shopee 1 triệu | android casino bonus | toolgame | nằm mơ thấy cứt | huvang slot | ket qua bong dalu | visa electron casino | diamond empire slot | juegos de casino online con dinero real | vg 88 casino | electronic slot machines for sale | quad cities casinos | 2 số cuối đặc biệt | colorado grande casino | pound slots | soi kèo 7m | hit it rich casino games | online slot machines that pay real money | raam slot | xem k pc | casino mộc bài tây ninh | gaito không vào được | rapidi casino | thẻ vàng tv | slotland casino | bronze casino | betway live casino | crypto casino no deposit bonus | chung ket the gioi lmht 2017 | casino blu ray | JDB666 com | game one piece 2 | tivoli casino | slot technician | eurogrand casino free spins |