NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

reel gems slot | 10 no deposit slots | kiểm soát điều kiện fo3 | những bài hát karaoke | philip slot | photobooth casino | box thao luan xsmn | y8 com 2 nguoi | energy casino 20 | bonus wheel slots | vip club casino | auto click nhanh nhất | vua tro choi yugioh tap 86 | truyện ngon tinh | great blue free slot machine | tao dan 2d | crank handle slot re2 | jackpot slots games | leovegas casino bonus | snake eyes casino | expresscard slot egpu | slot id minecraft | ddr2 in ddr4 slot | casino blu ray | mermaids millions slot | huong duong nguoc nang tap 40 | kqsx30 | crank and slotted link | bally slot machines | boss slots online | casino slot games | con trâu số mấy | play jackpot slots | slot car accessories | blackjack casino en ligne | đội hình real madrid 2024 | de ve 02 | cherry slots casino | casino source code | play together miễn phí không cần tải |