NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chơi pikachu online | doraemon tập mới | 888 casino gratis spins | đặc biệt tuần tháng năm | ipad sim card slot | slots club casino | casino geant | jackpot city casino free download | hoi an casino | kí tự tên liên quân | online casino franchise | Vua ớt | xsmb 568 vn | casino night attire | xo so 123 mien bac | casino cups | casino robbery | fafafa gold slots free coins | casinos mobile francais | id slot punch | viral casino | hellboy slot | casino deutsch | game dá bóng y8 | tiki paradise slot | auto click nhanh nhất | yutuber | vua hu | winbet casino | online casinos test | casino poker table | cau hinh iphone 11 | online casino pay by sms | ku vip slot | situs slot uang asli | slot club casino | wynn casino | slot belvedere | dự đoán xổ số tài lộc | best online casino in new zealand | corona casino phu quoc | sòng bài casino | soi cầu vip 3 miền | legends casino | soi cầu vietlott | 5 reel slots online | casino utan registrering |