NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

w88 is | thông tin tuyển dụng casino hội an | trò chơi stick war legacy | slotted metal angle | gala casino 10 pound free | casino affiliate | no deposit slots uk | slotted nut socket | flamingo las vegas hotel & casino | đội hình real madrid | lê bống lộ video | john wick 1 | mgm grand hotel and casino las vegas nv united states | zing me dang nhap | xsmn 28 02 24 | foxy casino review | bóng đá tv | ten zing me dep | signal slot qt | tại go88 vip | đá gà casino 67 | dàn lô bất bại | flux slot | bắn cá 888b casino | mod skin liên quân | bị đứt tay chảy máu đánh con gì | centurion slot | 888 casino online | casino raiders 2 | soi cầu lô đề - cam kết 100 ăn chắc | casino là gì | pink casino no deposit | wap soicauxoso doan | pragmatic slot demo | boom casino | ketqua100ngay | đá gà casino trực tiếp hôm nay | spin casino live chat | best jili slot game | 888 casino | lotsa slots free vegas casino slot machines |