NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

đề về 11 hôm sau đánh con gì | pragmatic play slot | cách xóa trang | trực tiếp đá gà casino hôm nay | casino room casino | fruit slots online | scandibet casino | game bai slot | slotted washer | doraemon tập mới nhất | game casino danh bai doi thuong | ma nữ đáng yêu tập cuối | casino jobs london | slots and poker | thống kê lô | 88 fortunes slot machine strategy | online casino usa | bigkool online | 888 slot | tải minecraft 1 19 miễn phí | chat se | casino background | nonstop ket thuc lau roi | t slot clamps | stainless steel slotted screws | omni slot | casino table rentals | fishing casino | slot belvedere | top 100 online casinos uk | great wild elk slot | signal slot qt | casino royale suit | xoilac 90phut | timber la gì | tải saoclub | map sỏi | netviet | soi cầu xsvl tài lộc | caravela casino | m88 m88zalo | chumba casino free sweeps | cf báo danh | bong da chuyen nhuong | jinni lotto casino | game slot live |