NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

b sports bet | slots lv bonus | tạo dàn đề 3d | casino thomo | 4399 nau an | chumba casino free sweeps | du doan xsmn dai phat | casino caliente on line | regular slotted container box | great wild elk slot | all irish casino | yukon gold casino | venetian macao casino | 2vn | chumba casino free sweeps | 101tv bóng đá | free slots 777 games | casino buffet prices | casino war online | casino in venice italy review | cakiem slot | airport slots | w88 casino | yandere simulator | thong ke loto mien bac | maquinas slots | trực tiếp đá gà casino 67 hôm nay | sở kiều truyện zing tv | retro reels extreme heat slot | bigbom | ku casino top | slot die head | big bang theory slots | xhamster mobile | thuyết minh về một danh lam thắng cảnh | mod skin lq | 888b today | lo vip | mobile casino slots | đại chiến kame | line 98 mobile | vtv16 | app sai khiến | hôm nay đánh đề con gì | game slot vtc | las vegas casino online | ladbrokes casino no deposit |