NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lich thi dau chung ket the gioi lmht 2016 | nằm mơ thấy xác chết đánh số gì | online casino roulette 10 cent | slot drill | ae888 casino | kinh nghiệm lô de | cách xóa trang trống trong word | bet247 casino | phatloc | hai số cuối giải đặc biệt | all casino | slot car accessories | kairat almaty vs | fortune bay casino minnesota | online slot machines that pay real money | thủ lĩnh thẻ bài phần 2 | casino online italia | slot spiele | BWIN | dual slot | online casino real money | xoilac tv 90phut | telesafe | k8 casino review | expansion scroll of radiance slot mu | giờ reset cầu thủ fo4 | slots 79 | nằm mơ thấy xác chết đánh số gì | laptop lock slot | free slots | trực tiếp copa america 2021 | telesafe | down zalo | gbox | captain jack casino download | vipbet | lịch u23 châu á 2024 | tiffany mills slots | game slot đổi thưởng uy tín 2020 | yutuber | xoilac tv 90phut | samsung tablet with sim card slot | link sopcast bong da hôm nay |