NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

irish slots casino | vnrom | nằm mơ thấy rắn to | elements slot | tim ban tren zing me | liên quân lmhmod | fafafa gold slots free coins | code football master 2 | marina bay casino singapore | sòng bạc casino | 7 chakras slot | how to play wheel of fortune slot machine | slot game online for mobile malaysia | dream league 2024 | real madrid đội hình | titan casino bonus code | bongda365 tv | đội hình real madrid 2024 | casino đà nẵng | BWIN | 855crown casino | xstv hang tuan | casino tilbud | online casino not registered with gamstop | retro reels slot | vn88 casino | slotted metal angle | spbo | nuôi dàn de 30 số khung 3 ngày | slotted nut socket | xosothantai mobi | casino slot oyna | best tablet with sim card slot | cau dep 88 | gypsy moon slot | soi cau 4 so vip 247 | minecraft 1 18 0 | trade casino | ku casino us | bond 007 casino royale | linear slot drain | tên liên quân kí tự đẹp |