NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

soi cầu hcm chính xác | bachkimgiaoan | free casino slots with bonus | best online casinos for us players | tuyển dụng casino tphcm | fargo casino | gói cước wifi viettel | thống kê tần suất | pai gow casino | slot attendant job description for resume | vuacuopbien | new pay by mobile casino | best casino slots | soi cầu 366com | dac biet năm | nạp mobile legends | casino holiday packages | slot terbesar | free casino slot games | dự đoán xsmb xổ số me | vegas casino | bond 007 casino royale | fast payout casino | vay tiền f88 | online casino zahlt nicht aus | casino hội an | toàn chức cao thủ phần 3 | freispiele casino | an lạc phùng khoang | đá gà casino campuchia | 7890 | s666 | jackpot city casino free download | golden tiger slot | free 5 no deposit casino uk | 777win casino | casino hải phòng | kame | câu lạc bộ bóng đá western united | isle of capri casino | new online slots | chơi casino online | expresscard slot egpu |