NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

western slots | siêuno win | mannhan tv live | sd slot | 1973 mệnh gì | online bingo and slots | beste casino app | online casino | golden mane slot | caesars palace casino | nấu xôi đậu phộng | doctor love on vacation slot | borgata online casino nj | french roulette casino | eye of horus online slot | tai zing speed | tần suất lô tô miền bắc 100 ngày | crown bavet casino hotel | casino online uy tín | free casino slot machines | holy moly casino slot | tần xuất hay tần suất | nhà cái slot | laser fruit slot | tên kí tự liên quân | casino sign up | số con rắn | adsbygoogle push error no slot size for availablewidth 0 | elvis the king slot | cau dep 88 | roulette casino | big bang theory slots | tro choi babybus | casino đánh giá | slotty casino | wap soicauxoso doan | thống kê xổ số gia lai | regular slotted container box | tần suất | football slot game | pocophone f1 sim card slot | yutuber | rồng vàng slot | cách xóa trang word | vozgame |