NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

deutsche casinos mit bonus ohne einzahlung | hack quay slot | kq7 | trò chơi zombie | casino mobile slots | tần xuất | nouveau riche slots | rolling hills casino phone number | quay slot | slot drain | winclub | tần xuất | big777 slot | vuong quoc vang slot | slot 918kiss | isle of capri casino | kết quả xổ số miền bắc năm 2018 | slot vip | chơi game 98 màn hình rộng | tại bắn cá tài lộc | avatar câu cá | v9vet | best online casino in new zealand | choione | hack casino | phủ nano kính | casino campuchia mới nhất | xsmb 888 vn | play double bubble slot | casino casino bonus | wintrillions casino review | bán cá hải tượng con 20cm | let it ride casino game | napa casino | tần xuất lo to | xo so truc tiep 3 mien minh ngoc | psg đấu với strasbourg | night rush online casino | casino geant | venus casino ae888 | go aircraft odd | golden hoyeah slots |